维纳过程,又称布朗运动,模拟了随机连续运动。它以连续路径为特征,意味着没有突然的跳跃。其在非重叠时间间隔内的增量是独立的且呈正态分布的,平均值为零,方差与时间间隔的长度成正比。这意味着小的变化比大的变化更有可能发生。虽然是一个理想化模型,但它在金融领域中对于模拟资产价格波动至关重要,其中独立增量反映了过去的价格波动并不能预测未来的价格波动这一观点。其数学上的易处理性使其在随机微积分和各种科学领域中至关重要。
让我们逐步推导 $dW=ξdt$
[](data:image/svg+xml;utf8,<svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702 c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14 c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54 c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10 s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429 c69,-144,104.5,-217.7,106.5,-221 l0 -0 c5.3,-9.3,12,-14,20,-14 H400000v40H845.2724 s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7 c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z M834 80h400000v40h-400000z"></path></svg>)
这一符号的合理性,以及它如何导出 $dW^2=dt$ 这一结论。
维纳过程 W(t) 描述了布朗运动,并具有以下性质:
$$ dW \sim \mathcal{N}(0, dt) $$
这意味着:
$$ \mathbb{E}[dW] = 0, \quad \text{Var}(dW) = dt $$
我们想理解为什么 $dW=ξdt$ 这一符号很有用。
[](data:image/svg+xml;utf8,<svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702 c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14 c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54 c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10 s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429 c69,-144,104.5,-217.7,106.5,-221 l0 -0 c5.3,-9.3,12,-14,20,-14 H400000v40H845.2724 s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7 c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z M834 80h400000v40h-400000z"></path></svg>)
由于 $dW$ 服从均值为 0,方差为 $dt$ 的正态分布,我们可以将其表示为:
$$ dW = \xi \sqrt{dt} $$
其中:
$ξ∼N(0,1)$ 是一个标准正态变量(均值为零,方差为 1)。
因子 $dt$ 确保了 $dW$ 的方差为 $dt$,因为:
[](data:image/svg+xml;utf8,<svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702 c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14 c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54 c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10 s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429 c69,-144,104.5,-217.7,106.5,-221 l0 -0 c5.3,-9.3,12,-14,20,-14 H400000v40H845.2724 s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7 c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z M834 80h400000v40h-400000z"></path></svg>)