角动量(有时称为动量矩或旋转动量)是线性动量的旋转类比。它是一个重要的物理量,因为它是一个守恒量——一个封闭系统的总角动量保持不变。
中心势由 $U(r)=\frac{1}{2} k r^2$ 给出,它表示一个三维谐振子。该系统在球坐标系中的拉格朗日量为:
$$ L=\frac{1}{2} m\left(\dot{r}^2+r^2 \dot{\theta}^2+r^2 \sin ^2 \theta \dot{\phi}^2\right)-\frac{1}{2} k r^2 $$
由于势是中心的,角动量是守恒的。设 $\lambda=m r^2 \dot{\phi}$ 为角动量的大小。能量由下式给出:
$$ E=\frac{1}{2} m\left(\dot{r}^2+r^2 \dot{\theta}^2+r^2 \sin ^2 \theta \dot{\phi}^2\right)+\frac{1}{2} k r^2 $$
为了简单起见,我们考虑赤道平面内的运动 ($\theta=\pi / 2, \dot{\theta}=0$)。那么:
$$ E=\frac{1}{2} m\left(\dot{r}^2+r^2 \dot{\phi}^2\right)+\frac{1}{2} k r^2 $$
代入 $\dot{\phi}=\lambda /\left(m r^2\right)$,我们得到:
$$ E=\frac{1}{2} m \dot{r}^2+\frac{\lambda^2}{2 m r^2}+\frac{1}{2} k r^2 $$
求解 $\dot{r}$:
$$ \dot{r}=\sqrt{\frac{2}{m}\left(E-\frac{\lambda^2}{2 m r^2}-\frac{1}{2} k r^2\right)} $$
这与给定的方程 (1 ) 一致。
现在,让我们求解这个微分方程。
$$ \begin{gathered} \frac{d r}{d t}=\sqrt{\frac{2}{m}\left(E-\frac{\lambda^2}{2 m r^2}-\frac{1}{2} k r^2\right)} \\ \frac{d r}{\sqrt{\frac{2}{m}\left(E-\frac{\lambda^2}{2 m r^2}-\frac{1}{2} k r^2\right)}}=d t \end{gathered} $$
设 $\omega=\sqrt{k / m}$,那么 $k=m \omega^2$。
[](data:image/svg+xml;utf8,<svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.28em" viewBox="0 0 400000 1296" preserveAspectRatio="xMinYMin slice"><path d="M263,681c0.7,0,18,39.7,52,119 c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120 c340,-704.7,510.7,-1060.3,512,-1067 l0 -0 c4.7,-7.3,11,-11,19,-11 H40000v40H1012.3 s-271.3,567,-271.3,567c-38.7,80.7,-84,175,-136,283c-52,108,-89.167,185.3,-111.5,232 c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1 s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26 c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z M1001 80h400000v40h-400000z"></path></svg>)
$$ \begin{gathered} E=\frac{1}{2} m \dot{r}^2+\frac{\lambda^2}{2 m r^2}+\frac{1}{2} m \omega^2 r^2 \\ \dot{r}^2=\frac{2 E}{m}-\frac{\lambda^2}{m^2 r^2}-\omega^2 r^2 \end{gathered} $$
设 $r^2=u$。那么 $2 r \dot{r}=\dot{u}$,并且 $\dot{r}=\dot{u} /(2 \sqrt{u})$。
[](data:image/svg+xml;utf8,<svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702 c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14 c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54 c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10 s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429 c69,-144,104.5,-217.7,106.5,-221 l0 -0 c5.3,-9.3,12,-14,20,-14 H400000v40H845.2724 s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7 c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z M834 80h400000v40h-400000z"></path></svg>)