叉积的正交性对于将物理、计算和几何问题转化为可解的向量运算至关重要。其直接的几何含义——总是产生一个垂直向量——使其在不同学科中不可或缺。
三维空间中两个向量的叉积会产生一个正交(垂直)于这两个原始向量的新向量。这一特性是其在数学、物理、工程和计算机科学中广泛应用的核心。
<aside> 🥅
$\gg$Applications and Visualization of Cross Product Orthogonality-2
</aside>
关键特性
叉积 $\vec{a} \times \vec{b}$ 始终正交于 $\vec{a}$ 和 $\vec{b}$。
叉积的大小等于由这两个向量形成的平行四边形的面积:
$$ \|\vec{a} \times \vec{b}\|=\|\vec{a}\|\|\vec{b}\| \sin (\theta) $$
其中 $\theta$ 是向量之间的夹角。
寻找垂直向量
计算面积
平行四边形面积: $|\vec{a} \times \vec{b}|$
[](data:image/svg+xml;utf8,<svg xmlns="http://www.w3.org/2000/svg" width="0.471em" height="0.714em" style="width:0.471em" viewBox="0 0 471 714" preserveAspectRatio="xMinYMin"><path d="M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5 3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11 10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63 -1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1 -7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59 H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359 c-16-25.333-24-45-24-59z"></path></svg>)
[](data:image/svg+xml;utf8,<svg xmlns="http://www.w3.org/2000/svg" width="0.471em" height="0.714em" style="width:0.471em" viewBox="0 0 471 714" preserveAspectRatio="xMinYMin"><path d="M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5 3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11 10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63 -1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1 -7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59 H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359 c-16-25.333-24-45-24-59z"></path></svg>)
三角形面积:$\ \frac{1}{2}|\vec{a} \times \vec{b}|^4$。
[](data:image/svg+xml;utf8,<svg xmlns="http://www.w3.org/2000/svg" width="0.471em" height="0.714em" style="width:0.471em" viewBox="0 0 471 714" preserveAspectRatio="xMinYMin"><path d="M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5 3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11 10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63 -1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1 -7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59 H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359 c-16-25.333-24-45-24-59z"></path></svg>)
[](data:image/svg+xml;utf8,<svg xmlns="http://www.w3.org/2000/svg" width="0.471em" height="0.714em" style="width:0.471em" viewBox="0 0 471 714" preserveAspectRatio="xMinYMin"><path d="M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5 3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11 10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63 -1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1 -7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59 H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359 c-16-25.333-24-45-24-59z"></path></svg>)
确定体积
三重标量积 $\vec{u} \cdot(\vec{v} \times \vec{w})$ 用于计算由三个向量定义的平行六面体的体积。
[](data:image/svg+xml;utf8,<svg xmlns="http://www.w3.org/2000/svg" width="0.471em" height="0.714em" style="width:0.471em" viewBox="0 0 471 714" preserveAspectRatio="xMinYMin"><path d="M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5 3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11 10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63 -1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1 -7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59 H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359 c-16-25.333-24-45-24-59z"></path></svg>)
[](data:image/svg+xml;utf8,<svg xmlns="http://www.w3.org/2000/svg" width="0.471em" height="0.714em" style="width:0.471em" viewBox="0 0 471 714" preserveAspectRatio="xMinYMin"><path d="M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5 3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11 10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63 -1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1 -7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59 H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359 c-16-25.333-24-45-24-59z"></path></svg>)
[](data:image/svg+xml;utf8,<svg xmlns="http://www.w3.org/2000/svg" width="0.471em" height="0.714em" style="width:0.471em" viewBox="0 0 471 714" preserveAspectRatio="xMinYMin"><path d="M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5 3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11 10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63 -1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1 -7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59 H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359 c-16-25.333-24-45-24-59z"></path></svg>)
物理学:扭矩与力
扭矩:由作用在位置向量 $\vec{r}$ 上的力 $\vec{F}$ 产生的扭矩 $\vec{\tau}$ 由以下公式给出:
$$ \vec{\tau}=\vec{r} \times \vec{F} $$
电磁学:磁场中运动带电粒子的洛伦兹力为 $q(\vec{v} \times \vec{B})$,其中产生的力垂直于速度和磁场。
[](data:image/svg+xml;utf8,<svg xmlns="http://www.w3.org/2000/svg" width="0.471em" height="0.714em" style="width:0.471em" viewBox="0 0 471 714" preserveAspectRatio="xMinYMin"><path d="M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5 3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11 10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63 -1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1 -7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59 H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359 c-16-25.333-24-45-24-59z"></path></svg>)
[](data:image/svg+xml;utf8,<svg xmlns="http://www.w3.org/2000/svg" width="0.471em" height="0.714em" style="width:0.471em" viewBox="0 0 471 714" preserveAspectRatio="xMinYMin"><path d="M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5 3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11 10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63 -1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1 -7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59 H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359 c-16-25.333-24-45-24-59z"></path></svg>)
计算机图形学
机器人学与运动学
几何解释
可视化工具