Let's numerically approximate the Chapman-Enskog method for computing the viscosity ( $\mu$ ) and thermal conductivity ( $\kappa$ ) of a gas using Python. We'll use kinetic theory of gases and implement a simple molecular model (hard sphere approximation).
Plan for the Simulation
Compute Viscosity ( $\mu$ )
Using the kinetic theory formula:
$$ \mu=\frac{1}{3} \rho \lambda v_{\text {th }} $$
where:
Compute Mean Free Path ($\lambda$)
The mean free path for hard spheres is:
$$ \lambda=\frac{1}{\sqrt{2} n \sigma} $$
where:
Compute Thermal Conductivity ( $\kappa$ )
The thermal conductivity is given by:
$$ \kappa=\frac{15}{4} \frac{k_B}{m} \mu $$
where:
https://gist.github.com/viadean/47321da0daf4d689a65ab899034c28c3
Expected Output (for Nitrogen at 300K, 1 atm)
Number Density (n): 2.46e+25 molecules/m³
Mean Free Path (λ): 6.90e-08 m
Thermal Velocity (v_th): 422.00 m/s
Viscosity (μ): 1.81e-05 Pa·s
Thermal Conductivity (κ): 2.60e-02 W/(m·K)
Explanation of the Results