Here explains a vector identity proof by simplifying both sides of an equation using the vector triple product and gradient product rules, ultimately showing that the identity holds only if the scalar field $\phi$ satisfies Laplace's equation ( $\nabla^2 \phi=0$ ). This means the scalar field must be a harmonic function. This theoretical concept is then made practical and intuitive by an app that visually connects a scalar field to its gradient vector field, allowing users to interactively explore these principles and identify harmonic functions.
<aside> 🧄
$\gg$Mathematical Structures Underlying Physical Laws
$\complement\cdots$Counselor
</aside>
The app provides an intuitive, interactive way to understand the abstract concept of a gradient by visually connecting a scalar function to its corresponding vector field. It reinforces that the gradient is a vector that points in the direction of the steepest increase, with its magnitude representing the rate of change. Additionally, it introduces and visualizes the concept of the Laplacian, helping to identify harmonic functions.
Visualize the scalar field and its Laplacian analysis and harmonic function check
Visualize the scalar field and its Laplacian analysis and harmonic function check
‣
<aside> 🧄
Proving the Cross Product Rules with the Levi-Civita Symbol
Proving the Epsilon-Delta Relation and the Bac-Cab Rule
Simplifying Levi-Civita and Kronecker Delta Identities
Why a Cube's Diagonal Angle Never Changes
How the Cross Product Relates to the Sine of an Angle
Finding the Shortest Distance and Proving Orthogonality for Skew Lines
A Study of Helical Trajectories and Vector Dynamics
The Power of Cross Products: A Visual Guide to Precessing Vectors
Divergence and Curl Analysis of Vector Fields
Unpacking Vector Identities: How to Apply Divergence and Curl Rules
Commutativity and Anti-symmetry in Vector Calculus Identities
Double Curl Identity Proof using the epsilon-delta Relation
The Orthogonality of the Cross Product Proved by the Levi-Civita Symbol and Index Notation
Surface Parametrisation and the Verification of the Gradient-Normal Relationship
Proof and Implications of a Vector Operator Identity
Conditions for a Scalar Field Identity
Solution and Proof for a Vector Identity and Divergence Problem
Kinematics and Vector Calculus of a Rotating Rigid Body
Work Done by a Non-Conservative Force and Conservative Force
The Lorentz Force and the Principle of Zero Work Done by a Magnetic Field
Calculating the Area of a Half-Sphere Using Cylindrical Coordinates
Divergence Theorem Analysis of a Vector Field with Power-Law Components
Total Mass in a Cube vs. a Sphere
Momentum of a Divergence-Free Fluid in a Cubic Domain
Total Mass Flux Through Cylindrical Surfaces
Analysis of Forces and Torques on a Current Loop in a Uniform Magnetic Field
Computing the Integral of a Static Electromagnetic Field
Surface Integral to Volume Integral Conversion Using the Divergence Theorem
Circulation Integral vs. Surface Integral
Using Stokes' Theorem with a Constant Scalar Field
Verification of the Divergence Theorem for a Rotating Fluid Flow
Integral of a Curl-Free Vector Field
Boundary-Driven Cancellation in Vector Field Integrals
Proving the Generalized Curl Theorem
Computing the Magnetic Field and its Curl from a Dipole Vector Potential
Proving Contravariant Vector Components Using the Dual Basis
Verification of Orthogonal Tangent Vector Bases in Cylindrical and Spherical Coordinates
Vector Field Analysis in Cylindrical Coordinates
Vector Field Singularities and Stokes' Theorem
Compute Parabolic coordinates-related properties
Analyze Flux and Laplacian of The Yukawa Potential
Verification of Vector Calculus Identities in Different Coordinate Systems
</aside>