The contracted Christoffel symbol of the second kind, $\Gamma_{a b}^b$, simplifies dramatically from a complex expression involving three metric derivatives to a single partial derivative, a direct result enabled by the key identity $\partial_a g=g g^{b d} \partial_a g_{b d}$, which links the contraction to the logarithmic derivative $\partial_a(\ln g)$. This simplification arises because the symmetry of the inverse metric $g^{b d}$ causes two terms in the original definition to cancel out, resulting in the fundamental relation $\Gamma_{a b}^b= \frac{1}{\sqrt{g}} \partial_a(\sqrt{g})$. This identity is geometrically crucial as the term $\sqrt{g}$ acts as the Jacobian of the coordinate transformation, making it essential for correctly calculating the covariant divergence of a vector field, $\nabla_a V^a=\partial_a V^a+\Gamma_{a b}^b V^a$, which correctly accounts for volume changes in curved space.

$$ \partial_a g=g g^{b d} \partial_a g_{b d} \quad \text { or equivalently } \quad g^{b d} \partial_a g_{b d}=\partial_a(\ln g) $$

This identity is the main step in converting the terms involving $g^{b d} \partial_a g_{b d}$ into a logarithmic derivative.

$$ \frac{1}{2} g^{b d} \partial_b g_{a d}-\frac{1}{2} g^{b d} \partial_d g_{a b}=0 $$

This cancellation is possible due to the symmetry of the inverse metric $g^{b d}$ and relabeling of dummy indices.

$$ \nabla_a V^a=\partial_a V^a+\Gamma_{a b}^b V^a=\frac{1}{\sqrt{g}} \partial_a\left(\sqrt{g} V^a\right) $$

This factor is the Jacobian of the transformation, $\sqrt{g}$, necessary to properly define volume and integration in curved space.

✍️Mathematical Proof

<aside> 🧄

  1. Derivation of Tensor Transformation Properties for Mixed Tensors (DTT-PMT)
  2. The Polar Tensor Basis in Cartesian Form (PTB-CF)
  3. Verifying the Rank Two Zero Tensor (RTZ-T)
  4. Tensor Analysis of Electric Susceptibility in Anisotropic Media (TAE-SAM)
  5. Analysis of Ohm's Law in an Anisotropic Medium (AOL-AM)
  6. Verifying Tensor Transformations (VTT)
  7. Proof of Coordinate Independence of Tensor Contraction (CIT-C)
  8. Proof of a Tensor's Invariance Property (TIP)
  9. Proving Symmetry of a Rank-2 Tensor (SRT)
  10. Tensor Symmetrization and Anti-Symmetrization Properties (TSA)
  11. Symmetric and Antisymmetric Tensor Contractions (SATC)
  12. The Uniqueness of the Zero Tensor under Specific Symmetry Constraints (UZT-SSC)
  13. Counting Independent Tensor Components Based on Symmetry (ITCS)
  14. Transformation of the Inverse Metric Tensor (TIMT)
  15. Finding the Covariant Components of a Magnetic Field (CCMF)
  16. Covariant Nature of the Gradient (CNG)
  17. Christoffel Symbol Transformation Rule Derivation (CST-RD)
  18. Contraction of the Christoffel Symbols and the Metric Determinant (CCS-MD)
  19. Divergence of an Antisymmetric Tensor in Terms of the Metric Determinant (DAT-MD)
  20. Calculation of the Metric Tensor and Christoffel Symbols in Spherical Coordinates (MTC-SSC)
  21. Christoffel Symbols for Cylindrical Coordinates (CSCC)
  22. Finding Arc Length and Curve Length in Spherical Coordinates (ALC-LSC)
  23. Solving for Metric Tensors and Christoffel Symbols (MTCS)
  24. Metric Tensor and Line Element in Non-Orthogonal Coordinates (MTL-ENC)
  25. Tensor vs. Non-Tensor Transformation of Derivatives (TNT-D)
  26. Verification of Covariant Derivative Identities (CDI)
  27. Divergence in Spherical Coordinates Derivation and Verification (DSC-DV)
  28. Laplace Operator Derivation and Verification in Cylindrical Coordinates (LOD-VCC)
  29. Divergence of Tangent Basis Vectors in Curvilinear Coordinates (DTV-CC)
  30. Derivation of the Laplacian Operator in General Curvilinear Coordinates (DLO-GCC)
  31. Verification of Tensor Density Operations (TDO)
  32. Verification of the Product Rule for Jacobian Determinants and Tensor Density Transformation (JDT-DT)
  33. Metric Determinant and Cross Product in Scaled Coordinates (MDC-PSC)
  34. Vanishing Divergence of the Levi-Civita Tensor (DLT)
  35. Curl and Vector Cross-Product Identity in General Coordinates (CVC-GC)
  36. Curl of the Dual Basis in Cylindrical and Spherical Coordinates (CDC-SC)
  37. Proof of Covariant Index Anti-Symmetrisation (CIA)
  38. Affine Transformations and the Orthogonality of Cartesian Rotations (ATO-CR)
  39. Fluid Mechanics Integrals for Mass and Motion (FMI-MM)
  40. Volume Elements in Non-Cartesian Coordinates (Jacobian Method) (VEN-CC)
  41. Young's Modulus and Poisson's Ratio in Terms of Bulk and Shear Moduli (YPB-SM)
  42. Tensor Analysis of the Magnetic Stress Tensor (TAM-ST)
  43. Surface Force for Two Equal Charges (SFT-EC)
  44. Total Electromagnetic Force in a Source-Free Static Volume (EFS-FSV)
  45. Proof of the Rotational Identity (PRI)
  46. Finding the Generalized Inertia Tensor for the Coupled Mass System (GIT-CMS)
  47. Tensor Form of the Centrifugal Force in Rotating Frames (TFC-FRF)
  48. Derivation and Calculation of the Gravitational Tidal Tensor (DCG-TT)
  49. Conversion of Total Magnetic Force to a Surface Integral via the Maxwell Stress Tensor (TMF-SI)
  50. Verifying the Inhomogeneous Maxwell's Equations in Spacetime (IME)

🧄Proof and Derivation-1

</aside>