The derivation proves that the partial derivatives of a scalar field, $\partial_a \phi$, naturally form the covariant components of a vector. This is a fundamental concept in tensor calculus because a scalar field's value is independent of the coordinate system. By applying the chain rule to a coordinate transformation, the partial derivatives are shown to transform in a manner identical to the definition of a covariant vector. This means the transformation rule for a covariant vector, $V_b^{\prime}= \sum_a \frac{\partial x^a}{\partial x^b} V_a$, perfectly matches the transformation of the partial derivatives, $\frac{\partial \phi^{\prime}}{\partial x^b}=\sum_a \frac{\partial \phi}{\partial x^a} \frac{\partial x^a}{\partial x^b}$. This result validates that the gradient, which is a vector composed of these partial derivatives, is a quintessential example of a covariant vector.

A scalar field is coordinate-independent. The core principle is that the value of a scalar quantity, such as temperature or pressure, remains the same regardless of the coordinate system used to describe it. This is expressed as $\phi\left(x^a\right)=\phi^{\prime}\left(x^{\prime b}\right)$.

The transformation of a covariant vector is defined by a specific rule. A vector with covariant components, $V_a$, transforms to a new set of components, $V_b^{\prime}$, using the Jacobian matrix of the coordinate transformation: $V_b^{\prime}=\sum_a \frac{\partial x^a}{\partial x^b} V_a$.

Partial derivatives of a scalar field naturally follow this rule. By applying the chain rule, the transformation of partial derivatives of the scalar field is found to be $\frac{\partial \phi^{\prime}}{\partial x^b}=\sum_a \frac{\partial \phi}{\partial x^a} \frac{\partial x^a}{\partial x^b}$.

The gradient is a covariant vector. Because the transformation rule for the partial derivatives of a scalar field is identical to the transformation rule for a covariant vector, the partial derivatives ( $\partial_a \phi$ ) are formally identified as the covariant components of a vector. This is why the gradient, which is the vector of all partial derivatives, is a fundamental example of a covariant vector.

✍️Mathematical Proof

<aside> 🧄

  1. Derivation of Tensor Transformation Properties for Mixed Tensors (DTT-PMT)
  2. The Polar Tensor Basis in Cartesian Form (PTB-CF)
  3. Verifying the Rank Two Zero Tensor (RTZ-T)
  4. Tensor Analysis of Electric Susceptibility in Anisotropic Media (TAE-SAM)
  5. Analysis of Ohm's Law in an Anisotropic Medium (AOL-AM)
  6. Verifying Tensor Transformations (VTT)
  7. Proof of Coordinate Independence of Tensor Contraction (CIT-C)
  8. Proof of a Tensor's Invariance Property (TIP)
  9. Proving Symmetry of a Rank-2 Tensor (SRT)
  10. Tensor Symmetrization and Anti-Symmetrization Properties (TSA)
  11. Symmetric and Antisymmetric Tensor Contractions (SATC)
  12. The Uniqueness of the Zero Tensor under Specific Symmetry Constraints (UZT-SSC)
  13. Counting Independent Tensor Components Based on Symmetry (ITCS)
  14. Transformation of the Inverse Metric Tensor (TIMT)
  15. Finding the Covariant Components of a Magnetic Field (CCMF)
  16. Covariant Nature of the Gradient (CNG)
  17. Christoffel Symbol Transformation Rule Derivation (CST-RD)
  18. Contraction of the Christoffel Symbols and the Metric Determinant (CCS-MD)
  19. Divergence of an Antisymmetric Tensor in Terms of the Metric Determinant (DAT-MD)
  20. Calculation of the Metric Tensor and Christoffel Symbols in Spherical Coordinates (MTC-SSC)
  21. Christoffel Symbols for Cylindrical Coordinates (CSCC)
  22. Finding Arc Length and Curve Length in Spherical Coordinates (ALC-LSC)
  23. Solving for Metric Tensors and Christoffel Symbols (MTCS)
  24. Metric Tensor and Line Element in Non-Orthogonal Coordinates (MTL-ENC)
  25. Tensor vs. Non-Tensor Transformation of Derivatives (TNT-D)
  26. Verification of Covariant Derivative Identities (CDI)
  27. Divergence in Spherical Coordinates Derivation and Verification (DSC-DV)
  28. Laplace Operator Derivation and Verification in Cylindrical Coordinates (LOD-VCC)
  29. Divergence of Tangent Basis Vectors in Curvilinear Coordinates (DTV-CC)
  30. Derivation of the Laplacian Operator in General Curvilinear Coordinates (DLO-GCC)
  31. Verification of Tensor Density Operations (TDO)
  32. Verification of the Product Rule for Jacobian Determinants and Tensor Density Transformation (JDT-DT)
  33. Metric Determinant and Cross Product in Scaled Coordinates (MDC-PSC)
  34. Vanishing Divergence of the Levi-Civita Tensor (DLT)
  35. Curl and Vector Cross-Product Identity in General Coordinates (CVC-GC)
  36. Curl of the Dual Basis in Cylindrical and Spherical Coordinates (CDC-SC)
  37. Proof of Covariant Index Anti-Symmetrisation (CIA)
  38. Affine Transformations and the Orthogonality of Cartesian Rotations (ATO-CR)
  39. Fluid Mechanics Integrals for Mass and Motion (FMI-MM)
  40. Volume Elements in Non-Cartesian Coordinates (Jacobian Method) (VEN-CC)
  41. Young's Modulus and Poisson's Ratio in Terms of Bulk and Shear Moduli (YPB-SM)
  42. Tensor Analysis of the Magnetic Stress Tensor (TAM-ST)
  43. Surface Force for Two Equal Charges (SFT-EC)
  44. Total Electromagnetic Force in a Source-Free Static Volume (EFS-FSV)
  45. Proof of the Rotational Identity (PRI)
  46. Finding the Generalized Inertia Tensor for the Coupled Mass System (GIT-CMS)
  47. Tensor Form of the Centrifugal Force in Rotating Frames (TFC-FRF)
  48. Derivation and Calculation of the Gravitational Tidal Tensor (DCG-TT)
  49. Conversion of Total Magnetic Force to a Surface Integral via the Maxwell Stress Tensor (TMF-SI)
  50. Verifying the Inhomogeneous Maxwell's Equations in Spacetime (IME)

🧄Proof and Derivation-1

</aside>