The geometric invariance of the angle between two cube diagonals, which remains constant at approximately $70.53^{\circ}$ regardless of the cube's side length, $\ell$. By representing the cube's edges with vectors $\vec{v}_1, \vec{v}_2,$ and $\vec{v}_3$, and calculating the inner product of the displacement vectors between opposite corners, it becomes clear that while the magnitude of these diagonals changes with size, their orientation relative to one another does not. This principle demonstrates that the internal angular relationship is a fixed property of the cube's geometry and is entirely independent of the scale or size of the object.

This is similar to a map scale; whether you are looking at a small hand-held map of a city or a massive billboard of the same area, the angles between the streets remain identical even though the physical distances on the paper have changed.

📎IllustraDemo

A derivative illustration based on our specific text and creative direction

A derivative illustration based on our specific text and creative direction


🏗️Structural clarification of Poof and Derivation

block-beta
columns 5
CC["Criss-Cross"]:5

%% Condensed Notes

CN["Condensed Notes"]:5
RF["Relevant File"]:5
NV["Narrated Video"]:4 VO["Voice-over"] 
PA("Plotting & Analysis")AA("Animation & Analysis")KT("Summary & Interpretation") ID("Illustration & Demo") PO("Polyptych")

%% Proof and Derivation

PD["Proof and Derivation"]:5
AF("Derivation Sheet"):5
NV2["Narrated Video"]:4 VO2["Voice-over"]
PA2("Plotting & Analysis")AA2("Animation & Analysis")KT2("Summary & Interpretation") ID2("Illustration & Demo") PO2("Polyptych")

classDef color_1 fill:#8e562f,stroke:#8e562f,color:#fff
class CC color_1

%% %% Condensed Notes

classDef color_2 fill:#14626e,stroke:#14626e,color:#14626e
class CN color_2
class RF color_2

classDef color_3 fill:#1e81b0,stroke:#1e81b0,color:#1e81b0
class NV color_3
class PA color_3
class AA color_3
class KT color_3
class ID color_3

classDef color_4 fill:#47a291,stroke:#47a291,color:#47a291
class VO color_4
class PO color_4

%% Proof and Derivation

classDef color_5 fill:#307834,stroke:#307834,color:#fff
class PD color_5
class AF color_5

classDef color_6 fill:#38b01e,stroke:#38b01e,color:#fff
class NV2 color_6
class PA2 color_6
class AA2 color_6
class KT2 color_6
class ID2 color_6

classDef color_7 fill:#47a291,stroke:#47a291,color:#fff
class VO2 color_7
class PO2 color_7

🗒️Downloadable Files - Recursive updates



<aside> <img src="/icons/report_pink.svg" alt="/icons/report_pink.svg" width="40px" />

Copyright Notice

All content and images on this page are the property of Sayako Dean, unless otherwise stated. They are protected by United States and international copyright laws. Any unauthorized use, reproduction, or distribution is strictly prohibited. For permission requests, please contact [email protected]

©️2026 Sayako Dean

</aside>