In electrostatics, the fundamental relationship between the electric potential ($V(x)$) and the volume charge density ($\rho(x)$) is established by Poisson's Equation ($\nabla^2 V(x)=-\frac{\rho(x)}{\epsilon_0}$), which is derived directly from Maxwell's Equations, specifically the differential form of Gauss's Law. This equation utilizes the Laplacian operator ($\nabla^2$) and the permittivity of free space ($\epsilon_0$). The resultant physical field is critically dependent on how the charge is mathematically modeled: when a point charge is modeled using the Dirac delta function, which is the sole mathematical source of the singularity, the system's response is a potential field characterized by a singularity and the iconic decay. Conversely, when the charge is modeled as a distributed source (like a hollow sphere), the singularity is eliminated, proving that the potential remains finite and constant inside the charge layer, resulting in a physically smooth field at the origin.

📎IllustraDemo

A derivative illustration based on our specific text and creative direction

A derivative illustration based on our specific text and creative direction


🏗️Structural clarification of Condensed Notes

block-beta
columns 5
CC["Criss-Cross"]:5

%% Condensed Notes

CN["Condensed Notes"]:5
RF["Relevant File"]:5
NV["Narrated Video"]:4 VO["Voice-over"] 
PA("Plotting & Analysis")AA("Animation & Analysis")KT("Summary & Interpretation") ID("Illustration & Demo") PO("Polyptych")

%% Proof and Derivation

PD["Proof and Derivation"]:5
AF("Derivation Sheet"):5
NV2["Narrated Video"]:4 VO2["Voice-over"]
PA2("Plotting & Analysis")AA2("Animation & Analysis")KT2("Summary & Interpretation") ID2("Illustration & Demo") PO2("Polyptych")

classDef color_1 fill:#8e562f,stroke:#8e562f,color:#fff
class CC color_1

classDef color_2 fill:#14626e,stroke:#14626e,color:#fff
class CN color_2
class RF color_2

classDef color_3 fill:#1e81b0,stroke:#1e81b0,color:#fff
class NV color_3
class PA color_3
class AA color_3
class KT color_3
class ID color_3

classDef color_4 fill:#47a291,stroke:#47a291,color:#fff
class VO color_4
class PO color_4

%% Proof and Derivation

classDef color_5 fill:#307834,stroke:#307834,color:#307834
class PD color_5
class AF color_5

classDef color_6 fill:#38b01e,stroke:#38b01e,color:#38b01e
class NV2 color_6
class PA2 color_6
class AA2 color_6
class KT2 color_6
class ID2 color_6

classDef color_7 fill:#47a291,stroke:#47a291,color:#47a291
class VO2 color_7
class PO2 color_7

🗒️Downloadable Files - Recursive updates



<aside> <img src="/icons/report_pink.svg" alt="/icons/report_pink.svg" width="40px" />

Copyright Notice

All content and images on this page are the property of Sayako Dean, unless otherwise stated. They are protected by United States and international copyright laws. Any unauthorized use, reproduction, or distribution is strictly prohibited. For permission requests, please contact [email protected]

© 2025 Sayako Dean

</aside>