The Laplace-Beltrami Operator is defined generally in tensor calculus as the divergence of the gradient. When applied to the cylindrical coordinate system ( $\rho, \phi, z$ ), the formula simplifies significantly because the metric $g_{a b}$ is diagonal, meaning only self-coupled terms ( $a=b$ ) survive. The crucial geometric factor is $\sqrt{g}=\rho$, which determines the scale of the differential volume element. Substituting this factor and the inverse metric components into the general formula reveals the origin of the terms in the final expression: the $\rho$ factor is retained inside the radial derivative $\partial_\rho$ as $\rho g^{\rho \rho} \partial_\rho \Phi$, resulting in the characteristic term $\frac{1}{\rho} \partial_\rho\left(\rho \partial_\rho f\right)$, while for the $\phi$ and $z$ components, $\rho$ is independent of the coordinate being differentiated, leading to simple second derivatives like $\frac{1}{\rho^2} \partial_\phi^2 f$. The successful match between the derived formula and the standard vector analysis expression confirms the consistency of the abstract tensor approach with traditional physics formulas.
block-beta
columns 5
CC["Criss-Cross"]:5
%% Condensed Notes
CN["Condensed Notes"]:5
RF["Relevant File"]:5
NV["Narrated Video"]:4 VO["Voice-over"]
PA("Plotting & Analysis")AA("Animation & Analysis")KT("Summary & Interpretation") ID("Illustration & Demo") PO("Polyptych")
%% Proof and Derivation
PD["Proof and Derivation"]:5
AF("Derivation Sheet"):5
NV2["Narrated Video"]:4 VO2["Voice-over"]
PA2("Plotting & Analysis")AA2("Animation & Analysis")KT2("Summary & Interpretation") ID2("Illustration & Demo") PO2("Polyptych")
classDef color_1 fill:#8e562f,stroke:#8e562f,color:#fff
class CC color_1
%% %% Condensed Notes
classDef color_2 fill:#14626e,stroke:#14626e,color:#14626e
class CN color_2
class RF color_2
classDef color_3 fill:#1e81b0,stroke:#1e81b0,color:#1e81b0
class NV color_3
class PA color_3
class AA color_3
class KT color_3
class ID color_3
classDef color_4 fill:#47a291,stroke:#47a291,color:#47a291
class VO color_4
class PO color_4
%% Proof and Derivation
classDef color_5 fill:#307834,stroke:#307834,color:#fff
class PD color_5
class AF color_5
classDef color_6 fill:#38b01e,stroke:#38b01e,color:#fff
class NV2 color_6
class PA2 color_6
class AA2 color_6
class KT2 color_6
class ID2 color_6
classDef color_7 fill:#47a291,stroke:#47a291,color:#fff
class VO2 color_7
class PO2 color_7
‣
<aside> <img src="/icons/report_pink.svg" alt="/icons/report_pink.svg" width="40px" />
Copyright Notice
All content and images on this page are the property of Sayako Dean, unless otherwise stated. They are protected by United States and international copyright laws. Any unauthorized use, reproduction, or distribution is strictly prohibited. For permission requests, please contact [email protected]
©️2026 Sayako Dean
</aside>