Orthonormal sets of vectors are incredibly useful in various areas of mathematics, physics, and engineering because they form a very "clean" and easy-to-work-with basis for a vector space. For example, in France, you might encounter orthonormal bases when studying signal processing or quantum mechanics at universities.

Consider the three vectors

$$ \vec{e}_{1^{\prime}}^{\prime}=\frac{\vec{e}_1}{\sqrt{2}}-\frac{\vec{e}3}{\sqrt{2}}, \quad \vec{e}{2^{\prime}}^{\prime}=\frac{\vec{e}_1}{\sqrt{3}}+\frac{\vec{e}_2}{\sqrt{3}}+\frac{\vec{e}3}{\sqrt{3}}, \quad \vec{e}{3^{\prime}}^{\prime}=\frac{\vec{e}_1}{\sqrt{6}}-\sqrt{\frac{2}{3}} \vec{e}_2+\frac{\vec{e}_3}{\sqrt{6}} $$

Show that this set of vectors is orthogonal and normalised. Determine whether they form a right- or left-handed set and compute the corresponding transformation coefficients.

Orthogonality and Normalisation

Let's check that each pair is orthogonal and each vector has unit length. Step 1: Normalisation

Step 2: Orthogonality

$$ \vec{e}{2^{\prime}}^{\prime} \cdot \vec{e}{3^{\prime}}^{\prime}=\frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{6}}+\frac{1}{\sqrt{3}} \cdot\left(-\sqrt{\frac{2}{3}}\right)+\frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{6}} $$

Compute each term:

$\frac{1}{3 \sqrt{2}}-\frac{\sqrt{2}}{3}+\frac{1}{3 \sqrt{2}}=\frac{2}{3 \sqrt{2}}-\frac{\sqrt{2}}{3}=\frac{2-\sqrt{2} \cdot \sqrt{2}}{3 \sqrt{2}}=\frac{2-2}{3 \sqrt{2}}=0$

All inner products vanish $\Rightarrow$ orthogonal.