The epsilon-delta relation is a powerful algebraic identity that provides a rigorous, non-geometric method for manipulating vector products. It serves as a crucial bridge between two fundamental vector analysis tools: the Levi-Civita symbol (which defines the cross product) and the Kronecker delta (which defines the dot product). By connecting these symbols, the relation allows complex vector identities, such as the bac-cab rule, to be proven systematically through algebraic manipulation rather than relying on messy component expansions or geometric intuition. The proof itself can be simplified using a case-based approach, demonstrating the elegance and efficiency of this tool.
block-beta
columns 5
CC["Criss-Cross"]:5
%% Condensed Notes
CN["Condensed Notes"]:5
RF["Relevant File"]:5
NV["Narrated Video"]:4 VO["Voice-over"]
PA("Plotting & Analysis")AA("Animation & Analysis")KT("Summary & Interpretation") ID("Illustration & Demo") PO("Polyptych")
%% Proof and Derivation
PD["Proof and Derivation"]:5
AF("Derivation Sheet"):5
NV2["Narrated Video"]:4 VO2["Voice-over"]
PA2("Plotting & Analysis")AA2("Animation & Analysis")KT2("Summary & Interpretation") ID2("Illustration & Demo") PO2("Polyptych")
classDef color_1 fill:#8e562f,stroke:#8e562f,color:#fff
class CC color_1
%% %% Condensed Notes
classDef color_2 fill:#14626e,stroke:#14626e,color:#14626e
class CN color_2
class RF color_2
classDef color_3 fill:#1e81b0,stroke:#1e81b0,color:#1e81b0
class NV color_3
class PA color_3
class AA color_3
class KT color_3
class ID color_3
classDef color_4 fill:#47a291,stroke:#47a291,color:#47a291
class VO color_4
class PO color_4
%% Proof and Derivation
classDef color_5 fill:#307834,stroke:#307834,color:#fff
class PD color_5
class AF color_5
classDef color_6 fill:#38b01e,stroke:#38b01e,color:#fff
class NV2 color_6
class PA2 color_6
class AA2 color_6
class KT2 color_6
class ID2 color_6
classDef color_7 fill:#47a291,stroke:#47a291,color:#fff
class VO2 color_7
class PO2 color_7
%%{init: {"flowchart": {"defaultRenderer": "elk"}}}%%
flowchart LR
E0@{shape: doc, label: "Proving the Epsilon-Delta Relation and the Bac-Cab Rule"}
E1@{shape: doc, label: "Show the efficiency and accuracy of the bac-cab rule over manual determinant-based nested rotations."}
D1@{shape: card, label: "Demonstrate the bac-cab rule and how the final result is pushed or pulled by individual vector components."}
D2@{shape: card, label: "Visualize the efficiency benefits of using the bac-cab rule compared to manual cross-product calculations"}
D3@{shape: card, label: "Show that the vector identity and epsilon-delta relation hold true regardless of vector magnitude."}
MF1@{shape: docs,label: "Vector rotation, dot product oscillation, and plane geometry"}
MF2@{shape: docs,label: "Operation counting (multiplications and additions) and computational efficiency."}
MF3@{shape: docs,label: "Vector scaling, summation, and the epsilon-delta relation."}
VI1@{shape: hex, label: "$$\\\\vec{a}, \\\\vec{b}, \\\\vec{c}, (\\\\vec{b}\\\\times\\\\vec{c})$$, and the resulting triple product vector"}
VI2@{shape: hex, label: "Rotating $$\\\\quad\\\\vec{a}, \\\\vec{b} , \\\\vec{c}$$, and `ghost` component vectors"}
VI3@{shape: hex, label: "Non-unit $$\\\\quad\\\\vec{a},\\\\vec{b},\\\\vec{c}$$"}
MI1@{shape: curv-trap, label: "$$\\\\vec{a} \\\\times(\\\\vec{b} \\\\times \\\\vec{c})=\\\\vec{b}(\\\\vec{a} \\\\cdot \\\\vec{c})-\\\\vec{c}(\\\\vec{a} \\\\cdot \\\\vec{b})$$"}
MI2@{shape: curv-trap, label: "$$[\\\\vec{a} \\\\times (\\\\vec{b} \\\\times \\\\vec{c})]_i = \\\\varepsilon_{ijk} a_j v_k = \\\\varepsilon_{ijk} a_j (\\\\varepsilon_{k\\\\ell m} b_\\\\ell c_m)$$"}
PA1@{shape: bow-rect,label: "Simplifying the wave equation in Electrodynamics (curl of a curl) and Fluid Dynamics"}
PA2@{shape: bow-rect, label: "Calculating nested rotations"}
L1@{shape: circ, label: "Python"}
L1:::lc
subgraph Examples
E0:::c1--->E1:::c2
end
subgraph Demos
D1:::c1 x--x D2:::c2
D3:::c2
end
subgraph Mathematical Focus
MF1:::c1
MF2:::c2
MF3:::c2
end
subgraph Vectors Involved
VI1:::c1
VI2:::c2
VI3:::c2
end
subgraph Mathematical Identity
MI1:::c1
MI2:::c1
end
subgraph Physical Application
PA1:::c1
PA2:::c1
end
E0 e12@==>MI1
e12@{animation: fast}
E0 e13@==>MI2
e13@{animation: fast}
MI1 e14@==>PA1
e14@{animation: fast}
MI2 e15@==>PA2
e15@{animation: fast}
E0 e0@==>L1 e1@==>D1
e0@{animation: fast}
e1@{animation: fast}
E1 e3@==>L1 e4@==>D2
L1 e5@==>D3
e3@{animation: fast}
e4@{animation: fast}
e5@{animation: fast}
D1 e6@==>MF1 e7@==>VI1
e6@{animation: fast}
e7@{animation: fast}
D2 e8@==>MF2 e9@==>VI2
e8@{animation: fast}
e9@{animation: fast}
D3 e10@==>MF3 e11@==>VI3
e10@{animation: fast}
e11@{animation: fast}
classDef c1 stroke:#008585,color:#008585,stroke-dasharray: 3 3,font-size:15pt
linkStyle 2,3,4,5,6,7,11,12 stroke:#008585
classDef c2 stroke:#ffd380,color:#ffd380,stroke-dasharray: 3 3,font-size:15pt
linkStyle 8,9,10,13,14,15,16 stroke:#ffd380
classDef lc stroke:#547c81,color:#547c81,stroke-width:7px,stroke-dasharray: 10 10,font-size:30pt
‣
<aside> <img src="/icons/report_pink.svg" alt="/icons/report_pink.svg" width="40px" />
Copyright Notice
All content and images on this page are the property of Sayako Dean, unless otherwise stated. They are protected by United States and international copyright laws. Any unauthorized use, reproduction, or distribution is strictly prohibited. For permission requests, please contact [email protected]
©️2026 Sayako Dean
</aside>