<aside> <img src="/icons/condense_yellow.svg" alt="/icons/condense_yellow.svg" width="40px" /> Python | 空间不确定性 | MATLAB | Julia | R | 精神病 | 神经元 | 算法推理 | 集体信念 | 数学模型 | 物种基因 | 进化网络 | 电路噪声 | 解码算法

</aside>

🎯要点

🎯空间不确定性和动态相互作用自我认知异类模型 | 🎯精神病神经元算法推理 | 🎯集体信念催化个人行动力数学模型 | 🎯物种基因进化关系网络算法 | 🎯电路噪声低功耗容错解码算法

📜和-积消息传递算法用例

📜MATLAB激光通信和-积消息传递算法(Python图形模型算法)模拟调制

📜图概率模型

📜Python问题决策影响图结构化概率模型

🍪语言内容分比

pie title 语言分比
"Python":80
"MATLAB":70
"C/C++":20
"Julia":15
"R":10
"Mathematica":10
pie title 内容分比
 "数学":90
 "算法、模型":80
 "人类认知、信念、集体、精神病、神经元":50
 "物种基因":30
 "量子计算":20
 "概率统计":40

✂️梗概

🍇Python贝叶斯网络消息传递算法

首先,假设我们有一个多叉树,它是没有循环的图。例如,我们有 4 个变量“下雨”、“洒水器”、“福尔摩斯”和“华生”,有向边分别为“下雨”到“福尔摩斯”、“下雨”到“华生”和“洒水器”到“福尔摩斯”。贝叶斯网络模拟了福尔摩斯和华生是邻居的故事。一天早上,福尔摩斯走出家门,发现草地湿了。要么是下雨了,要么是他忘了关洒水器。于是他去找邻居华生,看看他的草地是否也湿了。当他看到草地确实湿了时,他很确定他没有忘了洒水器,而是下雨了。因此,信息从华生流向洒水器。这种信息流由贝叶斯网络中的消息传递算法建模。

可能性包含有关观察的信息,例如,福尔摩斯草地在未观察的情况下的可能性为 1(湿)和 1(不湿)。如果观察到湿草,可能性变为 1(湿)和 0(不湿)。这些单位向量未归一化。

$$ L(X)=\prod_K \lambda_{(K \rightarrow X)} $$

似然函数基本上是变量子级发送的所有传入消息的乘积。它返回一个似然向量,其中包含变量每个可能值的似然值。对于“下雨”,它的基数为 2,代表“是”和“否”两种状态。

如果某个变量没有子节点(因为它是图中的叶节点且未被观察到),则其似然向量将是一个单位向量,其所有可能值均为 1,例如,由于我们一开始没有观察到福尔摩斯的草,因此我们将其似然向量分别设置为 [1, 1],代表“不湿”和“湿”。

Python伪码表示:

 def likelihood(self):
     incoming_children_messages = np.array([
         c.message_to_parent(self) for c in self.children
     ])
     return incoming_children_messages.prod(axis=0)

先验是某些事件在开始时就已经知道的概率,例如,下雨的概率为 20%。如果先验未知,则使用以下公式进行计算。先验会给出相应变量的无条件概率。因此,我们还需要包括条件概率。