临床因素是影响患者诊断、治疗和预后的关键要素,涵盖症状、病史、体征、实验室检查结果及影像学资料等。它们帮助医疗专业人员全面评估患者的健康状况,制定个性化治疗方案。同时,患者的年龄、性别、既往病史及生活方式等也属于重要临床因素,直接影响疾病发展与管理效果。

Clinical factor | ViaDean

参考文献

🌵Python片段

为了演示临床因素的分析,让我们模拟一个数据集并执行一些基本的统计和机器学习分析。我们将重点关注以下步骤:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

# Step 1: Simulate the dataset
np.random.seed(42)

# Simulating clinical factors
n_samples = 500
age = np.random.normal(50, 12, n_samples).clip(18, 90)  # Age between 18 and 90
gender = np.random.choice(['Male', 'Female'], n_samples)  # Binary gender
bmi = np.random.normal(25, 5, n_samples).clip(15, 50)    # BMI between 15 and 50
smoking_status = np.random.choice(['Smoker', 'Non-Smoker'], n_samples, p=[0.3, 0.7])
disease_outcome = np.random.choice([0, 1], n_samples, p=[0.7, 0.3])  # Disease prevalence of 30%

# Combine into a DataFrame
data = pd.DataFrame({
    'Age': age,
    'Gender': gender,
    'BMI': bmi,
    'Smoking_Status': smoking_status,
    'Disease_Outcome': disease_outcome
})

# Encode categorical variables
data['Gender'] = data['Gender'].map({'Male': 1, 'Female': 0})
data['Smoking_Status'] = data['Smoking_Status'].map({'Smoker': 1, 'Non-Smoker': 0})

data.head()

Result
         Age  Gender        BMI  Smoking_Status  Disease_Outcome
0  55.960570       0  21.478282               0                0
1  48.340828       0  17.957694               0                0
2  57.772262       0  17.216854               0                0
3  68.276358       1  28.030050               0                1
4  47.190160       0  18.597853               1                1

模拟数据集包含 500 个样本,包含以下列:

下一步: