临床因素是影响患者诊断、治疗和预后的关键要素,涵盖症状、病史、体征、实验室检查结果及影像学资料等。它们帮助医疗专业人员全面评估患者的健康状况,制定个性化治疗方案。同时,患者的年龄、性别、既往病史及生活方式等也属于重要临床因素,直接影响疾病发展与管理效果。
参考文献
为了演示临床因素的分析,让我们模拟一个数据集并执行一些基本的统计和机器学习分析。我们将重点关注以下步骤:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
# Step 1: Simulate the dataset
np.random.seed(42)
# Simulating clinical factors
n_samples = 500
age = np.random.normal(50, 12, n_samples).clip(18, 90) # Age between 18 and 90
gender = np.random.choice(['Male', 'Female'], n_samples) # Binary gender
bmi = np.random.normal(25, 5, n_samples).clip(15, 50) # BMI between 15 and 50
smoking_status = np.random.choice(['Smoker', 'Non-Smoker'], n_samples, p=[0.3, 0.7])
disease_outcome = np.random.choice([0, 1], n_samples, p=[0.7, 0.3]) # Disease prevalence of 30%
# Combine into a DataFrame
data = pd.DataFrame({
'Age': age,
'Gender': gender,
'BMI': bmi,
'Smoking_Status': smoking_status,
'Disease_Outcome': disease_outcome
})
# Encode categorical variables
data['Gender'] = data['Gender'].map({'Male': 1, 'Female': 0})
data['Smoking_Status'] = data['Smoking_Status'].map({'Smoker': 1, 'Non-Smoker': 0})
data.head()
Result
Age Gender BMI Smoking_Status Disease_Outcome
0 55.960570 0 21.478282 0 0
1 48.340828 0 17.957694 0 0
2 57.772262 0 17.216854 0 0
3 68.276358 1 28.030050 0 1
4 47.190160 0 18.597853 1 1
模拟数据集包含 500 个样本,包含以下列:
下一步: