A first-order partial differential equation (PDE) is a relationship between an unknown function $u\left(x_1, x_2, \ldots, x_n\right)$ of $n$ independent variables and its first partial derivatives. The method of characteristics is a powerful technique for solving first-order PDEs. The core idea is to transform the PDE into a system of ordinary differential equations (ODEs) along certain curves, called characteristic curves. Along these curves, the PDE simplifies, making it easier to solve.
Determine and sketch the characteristics of the partial differential equation $\left(2 x_2-3 x_1\right) \partial_{x_1} u-x_2 \partial_{x_2} u=x_2^2\left(2 x_2-5 x_1\right)$ and determine the solution $u\left(x_1, x_2\right)$ for the initial value $u\left(x_1, 1\right)=x_1+1$.
Step 1: Method of Characteristics
We write the PDE in the form:
$$ a\left(x_1, x_2\right) \frac{\partial u}{\partial x_1}+b\left(x_1, x_2\right) \frac{\partial u}{\partial x_2}=f\left(x_1, x_2\right) $$
Where:
The characteristic equations are:
$$ \frac{d x_1}{d t}=2 x_2-3 x_1, \quad \frac{d x_2}{d t}=-x_2, \quad \frac{d u}{d t}=x_2^2\left(2 x_2-5 x_1\right) $$
Step 2: Solve the characteristic system
Solve $\frac{d x_2}{d t}=-x_2$
This is separable:
$\frac{d x_2}{x_2}=-d t \Rightarrow \ln \left|x_2\right|=-t+C \Rightarrow x_2(t)=C_1 e^{-t}$
Let's set $x_2(0)=1 \Rightarrow C_1=1$, so:
$x_2(t)=e^{-t}$
Plug into $\frac{d x_1}{d t}=2 x_2-3 x_1$
Now $x_2(t)=e^{-t}$, so:
$$ ⁍ $$
This is a linear ODE. Use integrating factor:
$$ \frac{d x_1}{d t}+3 x_1=2 e^{-t} $$
Integrating factor: $\mu(t)=e^{3 t}$
$$ \frac{d}{d t}\left(x_1 e^{3 t}\right)=2 e^{2 t} \Rightarrow x_1 e^{3 t}=\int 2 e^{2 t} d t=\frac{2}{2} e^{2 t}+C=e^{2 t}+C \Rightarrow x_1(t)=e^{-t}+C e^{-3 t} $$
From $x_2(0)=1$, let $x_1(0)=\xi$. Then:
$$ \xi=x_1(0)=1+C \Rightarrow C=\xi-1 \Rightarrow x_1(t)=e^{-t}+(\xi-1) e^{-3 t} $$
So, along characteristics:
Now solve for $u(t)$ along characteristics:
$$ \frac{d u}{d t}=x_2^2\left(2 x_2-5 x_1\right) $$
Substitute:
So:
$$ \begin{gathered} \frac{d u}{d t}=e^{-2 t}\left(2 e^{-t}-5\left[e^{-t}+(\xi-1) e^{-3 t}\right]\right) \\ =e^{-2 t}\left(2 e^{-t}-5 e^{-t}-5(\xi-1) e^{-3 t}\right) \\ =e^{-2 t}\left(-3 e^{-t}-5(\xi-1) e^{-3 t}\right) \\ =-3 e^{-3 t}-5(\xi-1) e^{-5 t} \end{gathered} $$
Now integrate:
$$ \begin{gathered} u(t)=\int\left(-3 e^{-3 t}-5(\xi-1) e^{-5 t}\right) d t+D \\ =e^{-3 t}+(\xi-1) e^{-5 t}+D \\ u(t)=-e^{-3 t}-(\xi-1) e^{-5 t}+D \end{gathered} $$
At $t=0, x_1=\xi, x_2=1 \Rightarrow u(0)=u(\xi, 1)=\xi+1$ So:
$$ u(0)=-1-(\xi-1)+D=-\xi+D \Rightarrow \xi+1=-\xi+D \Rightarrow D=2 \xi+1 $$
So the solution along characteristics is:
$$ u(t)=-e^{-3 t}-(\xi-1) e^{-5 t}+2 \xi+1 $$
Step 3: Express $u$ in terms of $x_1, x_2$
We have: