The electromagnetic field locally mediates the repulsive force between two equal charges ( $+ q$ and $+ q$ ) through tension. On the midplane ( $x^3=0$ ), the total electric field is purely radial ( $E _3=0$ ), meaning the field lines run parallel to the surface. This zero normal component dictates that the total surface force, calculated using the Maxwell stress tensor, results from the tension along these field lines, giving $F= -\frac{q^2}{4 \pi \varepsilon_0(2 d)^2} e_3$. This calculated force is attractive (pulling the two field regions together), and it perfectly balances the upward push that the lower charge exerts on the field, thereby satisfying the requirement for static equilibrium and validating the concept that the field, not just the charges, is a mechanical entity subject to forces.

Brief audio

Field Tension Mediates Repulsion and Ensures Static Equilibrium#audio

Key takeaways

  1. Electric Field Geometry and Symmetry

  2. Nature of the Surface Force

    $$ d F_3=-\frac{1}{2} \varepsilon_0 E^2 d x^1 d x^2 $$

    This term represents tension along the electric field lines. Since the field lines run parallel to the surface, they act like stretched rubber bands, pulling the field regions toward each other.

    $$ F=-\frac{q^2}{4 \pi \varepsilon_0(2 d)^2} e_3 $$

    The negative sign indicates a force pointing downward (in the $-e_3$ direction), meaning the field in the $x^3>0$ region exerts an attractive pull on the field in the $x^3<0$ region.

  3. Consistency with Static Equilibrium and Locality

✍️Mathematical Proof

Cue Columns

<aside> 🧄

  1. Derivation of Tensor Transformation Properties for Mixed Tensors (DTT-PMT)
  2. The Polar Tensor Basis in Cartesian Form (PTB-CF)
  3. Verifying the Rank Two Zero Tensor (RTZ-T)
  4. Tensor Analysis of Electric Susceptibility in Anisotropic Media (TAE-SAM)
  5. Analysis of Ohm's Law in an Anisotropic Medium (AOL-AM)
  6. Verifying Tensor Transformations (VTT)
  7. Proof of Coordinate Independence of Tensor Contraction (CIT-C)
  8. Proof of a Tensor's Invariance Property (TIP)
  9. Proving Symmetry of a Rank-2 Tensor (SRT)
  10. Tensor Symmetrization and Anti-Symmetrization Properties (TSA)
  11. Symmetric and Antisymmetric Tensor Contractions (SATC)
  12. The Uniqueness of the Zero Tensor under Specific Symmetry Constraints (UZT-SSC)
  13. Counting Independent Tensor Components Based on Symmetry (ITCS)
  14. Transformation of the Inverse Metric Tensor (TIMT)
  15. Finding the Covariant Components of a Magnetic Field (CCMF)
  16. Covariant Nature of the Gradient (CNG)
  17. Christoffel Symbol Transformation Rule Derivation (CST-RD)
  18. Contraction of the Christoffel Symbols and the Metric Determinant (CCS-MD)
  19. Divergence of an Antisymmetric Tensor in Terms of the Metric Determinant (DAT-MD)
  20. Calculation of the Metric Tensor and Christoffel Symbols in Spherical Coordinates (MTC-SSC)
  21. Christoffel Symbols for Cylindrical Coordinates (CSCC)
  22. Finding Arc Length and Curve Length in Spherical Coordinates (ALC-LSC)
  23. Solving for Metric Tensors and Christoffel Symbols (MTCS)
  24. Metric Tensor and Line Element in Non-Orthogonal Coordinates (MTL-ENC)
  25. Tensor vs. Non-Tensor Transformation of Derivatives (TNT-D)
  26. Verification of Covariant Derivative Identities (CDI)
  27. Divergence in Spherical Coordinates Derivation and Verification (DSC-DV)
  28. Laplace Operator Derivation and Verification in Cylindrical Coordinates (LOD-VCC)
  29. Divergence of Tangent Basis Vectors in Curvilinear Coordinates (DTV-CC)
  30. Derivation of the Laplacian Operator in General Curvilinear Coordinates (DLO-GCC)
  31. Verification of Tensor Density Operations (TDO)
  32. Verification of the Product Rule for Jacobian Determinants and Tensor Density Transformation (JDT-DT)
  33. Metric Determinant and Cross Product in Scaled Coordinates (MDC-PSC)
  34. Vanishing Divergence of the Levi-Civita Tensor (DLT)
  35. Curl and Vector Cross-Product Identity in General Coordinates (CVC-GC)
  36. Curl of the Dual Basis in Cylindrical and Spherical Coordinates (CDC-SC)
  37. Proof of Covariant Index Anti-Symmetrisation (CIA)
  38. Affine Transformations and the Orthogonality of Cartesian Rotations (ATO-CR)
  39. Fluid Mechanics Integrals for Mass and Motion (FMI-MM)
  40. Volume Elements in Non-Cartesian Coordinates (Jacobian Method) (VEN-CC)
  41. Young's Modulus and Poisson's Ratio in Terms of Bulk and Shear Moduli (YPB-SM)
  42. Tensor Analysis of the Magnetic Stress Tensor (TAM-ST)
  43. Surface Force for Two Equal Charges (SFT-EC)
  44. Total Electromagnetic Force in a Source-Free Static Volume (EFS-FSV)
  45. Proof of the Rotational Identity (PRI)
  46. Finding the Generalized Inertia Tensor for the Coupled Mass System (GIT-CMS)
  47. Tensor Form of the Centrifugal Force in Rotating Frames (TFC-FRF)
  48. Derivation and Calculation of the Gravitational Tidal Tensor (DCG-TT)
  49. Conversion of Total Magnetic Force to a Surface Integral via the Maxwell Stress Tensor (TMF-SI)
  50. Verifying the Inhomogeneous Maxwell's Equations in Spacetime (IME) </aside>