The Kronecker Delta $\delta_{i j}$ is defined as:
$$ \delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases} $$
Uses in Vector Algebra and Geometry
<aside> 🥅
Synthesizing an excerpt is crucial for grasping a discipline's multifaceted nature.
🎬Animated result and interactive web
$\gg$🧠Cloud AI for numerical analysis and code verification
</aside>
$$ a \cdot b =\sum_{i, j} a_i \delta_{i j} b_j=\sum_i a_i b_i $$
demonstrating its use in simplifying summations over indices
The Permutation Symbol (Levi-Civita symbol), usually denoted as $\varepsilon_{i j k}$ in three dimensions, is defined as:
$$ \varepsilon_{i j k}= \begin{cases}+1 & \text { if }(i, j, k) \text { is an even permutation of }(1,2,3) \\ -1 & \text { if }(i, j, k) \text { is an odd permutation of }(1,2,3) \\ 0 & \text { if any two indices are equal }\end{cases} $$
Key Applications
Cross Product: The cross product can be expressed using the permutation symbol:
$$ [ a \times b ]i=\varepsilon{i j k} a_j b_k $$
which captures its antisymmetric properties .