Divergence and curl represent physical properties of a vector field-specifically the "spreading out" and "rotation"-that remain invariant regardless of the coordinate system used for calculation. For the position vector $x$, the divergence consistently equals 3 , reflecting the fact that the field expands uniformly in three dimensions ( 1+1+1). Meanwhile, the curl is consistently 0 , confirming that the position vector is a radial, irrotational field. While the mathematical expressions for these operators become more complex in cylindrical and spherical systems due to the inclusion of scale factors like $\rho, r$, and $\sin \theta$, they ultimately yield identical results to the simpler Cartesian derivatives, demonstrating the consistency of vector calculus across different geometries.
flowchart LR
E0@{shape: doc, label: "Verification of Vector Calculus Identities in Different Coordinate Systems"}
E1@{shape: doc, label: "Explore how these operators behave for the gravitational field"}
E2@{shape: doc, label: "See how these equations change if we consider the Earth as a solid sphere"}
P1@{shape: card, label: "The analysis of the divergence and curl of the position vector"}
P2@{shape: card, label: "How the Divergence and Curl behave in Cartesian, Cylindrical, and Spherical coordinate systems"}
P3@{shape: card, label: "How the gravitational force linearly increases from the center to the surface before following the inverse-square law"}
L1@{shape: circ, label: "Python"}
L1:::lc
subgraph Examples
E0:::c1--->E1:::c2 & E2:::c3
end
subgraph Demos
P1:::c1
P2:::c2
P3:::c3
end
E0 e1@==>L1 e11@==>|Animation|P1
e1@{animation: fast}
e11@{animation: fast}
E1 e2@==>L1 e22@==>|Animation|P2
e2@{animation: fast}
e22@{animation: fast}
E2 e3@==>L1 e33@==>|Animation|P3
e3@{animation: fast}
e33@{animation: fast}
classDef c1 stroke:#e3894b,color:#e3894b,stroke-dasharray: 3 3,font-size:15pt
linkStyle 2,3 stroke:#e3894b
classDef c2 stroke:#1e81b0,color:#1e81b0,stroke-dasharray: 3 3,font-size:15pt
linkStyle 4,5 stroke:#1e81b0
classDef c3 stroke:#38b01e,color:#38b01e,stroke-dasharray: 3 3,font-size:15pt
linkStyle 6,7 stroke:#38b01e
classDef lc stroke:#a09349,color:#a09349,stroke-width:3px,stroke-dasharray: 20 20,font-size:15pt
block-beta
columns 5
CC["Criss-Cross"]:5
%% Condensed Notes
CN["Condensed Notes"]:5
RF["Relevant File"]:5
NV["Narrated Video"]:4 VO["Voice-over"]
PA("Plotting & Analysis")AA("Animation & Analysis")KT("Summary & Interpretation") ID("Illustration & Demo") PO("Polyptych")
%% Proof and Derivation
PD["Proof and Derivation"]:5
AF("Derivation Sheet"):5
NV2["Narrated Video"]:4 VO2["Voice-over"]
PA2("Plotting & Analysis")AA2("Animation & Analysis")KT2("Summary & Interpretation") ID2("Illustration & Demo") PO2("Polyptych")
classDef color_1 fill:#8e562f,stroke:#8e562f,color:#fff
class CC color_1
%% %% Condensed Notes
classDef color_2 fill:#14626e,stroke:#14626e,color:#14626e
class CN color_2
class RF color_2
classDef color_3 fill:#1e81b0,stroke:#1e81b0,color:#1e81b0
class NV color_3
class PA color_3
class AA color_3
class KT color_3
class ID color_3
classDef color_4 fill:#47a291,stroke:#47a291,color:#47a291
class VO color_4
class PO color_4
%% Proof and Derivation
classDef color_5 fill:#307834,stroke:#307834,color:#fff
class PD color_5
class AF color_5
classDef color_6 fill:#38b01e,stroke:#38b01e,color:#fff
class NV2 color_6
class PA2 color_6
class AA2 color_6
class KT2 color_6
class ID2 color_6
classDef color_7 fill:#47a291,stroke:#47a291,color:#fff
class VO2 color_7
class PO2 color_7
‣
<aside> <img src="/icons/report_pink.svg" alt="/icons/report_pink.svg" width="40px" />
Copyright Notice
All content and images on this page are the property of Sayako Dean, unless otherwise stated. They are protected by United States and international copyright laws. Any unauthorized use, reproduction, or distribution is strictly prohibited. For permission requests, please contact [email protected]
©️2026 Sayako Dean
</aside>