The dynamic visualization of the two-body collision powerfully illustrates that the Law of Conservation of Momentum is a direct consequence of Newton's Third Law (Action-Reaction). As the objects interact, the total momentum of the closed system remains constant, meaning any momentum lost by one object is precisely gained by the other. This conservation is achieved because the internal forces acting between the two objects ($\vec{F}_1$ and $\vec{F}_2$) are always equal in magnitude and opposite in direction. By ensuring the net internal force ( $\vec{F}_1+\vec{F}_2$ ) is zero at every instant of the collision, the system guarantees that the total rate of change of momentum ( $d \vec{p} / d t$ ) is also zero, preserving the total momentum.
block-beta
columns 5
CC["Criss-Cross"]:5
%% Condensed Notes
CN["Condensed Notes"]:5
RF["Relevant File"]:5
NV["Narrated Video"]:4 VO["Voice-over"]
PA("Plotting & Analysis")AA("Animation & Analysis")KT("Summary & Interpretation") ID("Illustration & Demo") PO("Polyptych")
%% Proof and Derivation
PD["Proof and Derivation"]:5
AF("Derivation Sheet"):5
NV2["Narrated Video"]:4 VO2["Voice-over"]
PA2("Plotting & Analysis")AA2("Animation & Analysis")KT2("Summary & Interpretation") ID2("Illustration & Demo") PO2("Polyptych")
classDef color_1 fill:#8e562f,stroke:#8e562f,color:#fff
class CC color_1
classDef color_2 fill:#14626e,stroke:#14626e,color:#fff
class CN color_2
class RF color_2
classDef color_3 fill:#1e81b0,stroke:#1e81b0,color:#fff
class NV color_3
class PA color_3
class AA color_3
class KT color_3
class ID color_3
classDef color_4 fill:#47a291,stroke:#47a291,color:#fff
class VO color_4
class PO color_4
%% Proof and Derivation
classDef color_5 fill:#307834,stroke:#307834,color:#307834
class PD color_5
class AF color_5
classDef color_6 fill:#38b01e,stroke:#38b01e,color:#38b01e
class NV2 color_6
class PA2 color_6
class AA2 color_6
class KT2 color_6
class ID2 color_6
classDef color_7 fill:#47a291,stroke:#47a291,color:#47a291
class VO2 color_7
class PO2 color_7
‣
<aside> <img src="/icons/report_pink.svg" alt="/icons/report_pink.svg" width="40px" />
Copyright Notice
All content and images on this page are the property of Sayako Dean, unless otherwise stated. They are protected by United States and international copyright laws. Any unauthorized use, reproduction, or distribution is strictly prohibited. For permission requests, please contact [email protected]
© 2025 Sayako Dean
</aside>