This interactive application provides a visual and analytical bridge between scalar fields and their vector derivatives, specifically focusing on the gradient and the Laplacian. By transforming mathematical functions into 2D vector maps, it illustrates how the gradient points toward the steepest ascent, with arrow lengths representing the local slope. Beyond simple visualization, the tool automates the process of finding harmonic functions-those that satisfy Laplace's equation-by calculating the Laplacian and determining if it equals zero. Whether exploring the contours of a saddle point or the stability of a wave field, the app serves as a practical lab for identifying the unique properties of potential fields in multivariable calculus.
This simulation demonstrates how the mathematical identity $\nabla \times (\nabla \phi \times a)=\nabla(\nabla \phi \cdot a)$ acts as a balancing condition in fluid dynamics and MHD. By visualizing a Gaussian scalar pulse $\phi$ within a non-uniform vortex field $a(x)$, the demo illustrates that when the vector field is non-constant, the scalar field is subjected to advection and shearing forces that prevent it from remaining in a simple harmonic state ( $\nabla^2 \phi=0$ ). The resulting distortion shows that for the identity to hold in complex systems, the Laplacian of the scalar field must perfectly compensate for the spatial gradients and curl of the surrounding flow, highlighting the deep coupling between a field's local geometry and its global transport behavior.
block-beta
columns 6
CC["Criss-Cross"]:6
%% Condensed Notes
CN["Condensed Notes"]:6
RF["Relevant File"]:6
NV["Narrated Video"]:6
PA("Plotting & Analysis")AA("Animation & Analysis")KT("Summary & Interpretation") ID("Illustration & Demo") VA1("Visual Aid")MG1("Multigraph")
%% Proof and Derivation
PD["Proof and Derivation"]:6
AF("Derivation Sheet"):6
NV2["Narrated Video"]:6
PA2("Plotting & Analysis")AA2("Animation & Analysis")KT2("Summary & Interpretation") ID2("Illustration & Demo")VA2("Visual Aid") MG2("Multigraph")
classDef color_1 fill:#8e562f,stroke:#8e562f,color:#fff
class CC color_1
%% %% Condensed Notes
classDef color_2 fill:#14626e,stroke:#14626e,color:#14626e
class CN color_2
class RF color_2
classDef color_3 fill:#1e81b0,stroke:#1e81b0,color:#1e81b0
class NV color_3
class PA color_3
class AA color_3
class KT color_3
class ID color_3
class VA1 color_3
classDef color_4 fill:#47a291,stroke:#47a291,color:#47a291
class VO color_4
class MG1 color_4
%% Proof and Derivation
classDef color_5 fill:#307834,stroke:#307834,color:#fff
class PD color_5
class AF color_5
classDef color_6 fill:#38b01e,stroke:#38b01e,color:#fff
class NV2 color_6
class PA2 color_6
class AA2 color_6
class KT2 color_6
class ID2 color_6
class VA2 color_6
classDef color_7 fill:#47a291,stroke:#47a291,color:#fff
class VO2 color_7
class MG2 color_7
‣
<aside> <img src="/icons/report_pink.svg" alt="/icons/report_pink.svg" width="40px" />
Copyright Notice
All content and images on this page are the property of Sayako Dean, unless otherwise stated. They are protected by United States and international copyright laws. Any unauthorized use, reproduction, or distribution is strictly prohibited. For permission requests, please contact [email protected]
©️2026 Sayako Dean
</aside>