The definition of the moment of inertia tensor $I_{ij}$ used in the proof, is: $I_{ij} = \int_V \rho (x_k x_k \delta_{ij} - x_i x_j) dV$
This integral formula defines the components of the moment of inertia tensor for a rigid body rotating about an axis passing through the origin, where:
In component form:
The diagonal components ($i=j$) represent the moment of inertia about the $i$-axis:
$I_{ii} = \int_V \rho (x_k x_k \delta_{ii} - x_i x_i) dV = \int_V \rho (r^2 - x_i^2) dV$
The off-diagonal components ($i \neq j$) are the products of inertia:
$I_{ij} = \int_V \rho (x_k x_k \cdot 0 - x_i x_j) dV = - \int_V \rho x_i x_j dV$
What is the definition of the moment of inertia tensor used in the proof-L.mp4