The final form of the generalized inertia tensor matrix $\mathbf{M}$ is: $\mathbf{M} = \begin{pmatrix} M_{rr} & M_{r\varphi} \\ M_{\varphi r} & M_{\varphi\varphi} \end{pmatrix} = \begin{pmatrix} m_1 + m_2 & 0 \\ 0 & m_1 r^2 \end{pmatrix}$

This matrix summarizes how the system's kinetic energy ($T$) depends on the generalized velocities ($\dot{r}$ and $\dot{\varphi}$), where $T = \frac{1}{2} (\dot{r} \ \dot{\varphi}) \mathbf{M} \begin{pmatrix} \dot{r} \\ \dot{\varphi} \end{pmatrix}$.

The components, have the following physical meanings:


1. Radial Inertia Component ($M_{rr}$)

$$ M_{rr} = m_1 + m_2 $$


2. Angular Inertia Component ($M_{\varphi\varphi}$)

$$ M_{\varphi\varphi} = m_1 r^2 $$


3. Cross-Terms ($M_{r\varphi}$ and $M_{\varphi r}$)

$$ M_{r\varphi} = M_{\varphi r} = 0 $$

Brief audio

What is the final form of the generalized inertia tensor matrix M in generalized coordinates-L.mp4