The tangent vectors ( $E_u, E_v$ ) rapidly rotate and stretch as $u$ changes, even though the Christoffel symbols that depend only on $v\left(\Gamma_{u u}^v, \Gamma_{u v}^u\right)$ remain constant. This demonstrates that the connection (Christoffel symbols) only captures one part of the basis vector change, while the rotation and stretching dependent on $u$ are governed by the other non-zero symbols and the metric components. As $v$ increases, the magnitude of $E_u$ grows dramatically (proportional to $v$ ), causing the coordinate grid to expand away from the origin. This visual expansion directly confirms the functional dependencies of the key Christoffel symbols ( $\Gamma_{u u}^v=v$ increases, $\Gamma_{u v}^u=1 / v$ decreases), showing how the change in the scale factor $v$ controls the connection and local geometry. Geometric changes in the coordinate system, encoded by the non-zero Christoffel symbols, are highly dependent on the direction of motion. In the hyperbolic system, moving along the $u$-direction primarily causes the basis to rotate and stretch nonuniformly (governed by $u$-dependent terms), while moving along the $v$-direction causes a dramatic, proportional scaling of the grid (directly captured by the $v$-dependent terms like $\Gamma_{u u}^v= v)$.

🎬 Narrated Video

https://youtube.com/shorts/1jvmRtzxQHo?feature=share


🏗️Structural clarification of Poof and Derivation

block-beta
columns 5
CC["Criss-Cross"]:5

%% Condensed Notes

CN["Condensed Notes"]:5
RF["Relevant File"]:5
NV["Narrated Video"]:4 VO["Voice-over"] 
PA("Plotting & Analysis")AA("Animation & Analysis")KT("Summary & Interpretation") ID("Illustration & Demo") PO("Polyptych")

%% Proof and Derivation

PD["Proof and Derivation"]:5
AF("Derivation Sheet"):5
NV2["Narrated Video"]:4 VO2["Voice-over"]
PA2("Plotting & Analysis")AA2("Animation & Analysis")KT2("Summary & Interpretation") ID2("Illustration & Demo") PO2("Polyptych")

classDef color_1 fill:#8e562f,stroke:#8e562f,color:#fff
class CC color_1

%% %% Condensed Notes

classDef color_2 fill:#14626e,stroke:#14626e,color:#14626e
class CN color_2
class RF color_2

classDef color_3 fill:#1e81b0,stroke:#1e81b0,color:#1e81b0
class NV color_3
class PA color_3
class AA color_3
class KT color_3
class ID color_3

classDef color_4 fill:#47a291,stroke:#47a291,color:#47a291
class VO color_4
class PO color_4

%% Proof and Derivation

classDef color_5 fill:#307834,stroke:#307834,color:#fff
class PD color_5
class AF color_5

classDef color_6 fill:#38b01e,stroke:#38b01e,color:#fff
class NV2 color_6
class PA2 color_6
class AA2 color_6
class KT2 color_6
class ID2 color_6

classDef color_7 fill:#47a291,stroke:#47a291,color:#fff
class VO2 color_7
class PO2 color_7

🗒️Downloadable Files - Recursive updates



<aside> <img src="/icons/report_pink.svg" alt="/icons/report_pink.svg" width="40px" />

Copyright Notice

All content and images on this page are the property of Sayako Dean, unless otherwise stated. They are protected by United States and international copyright laws. Any unauthorized use, reproduction, or distribution is strictly prohibited. For permission requests, please contact [email protected]

©️2026 Sayako Dean

</aside>