<aside> <img src="/icons/condense_yellow.svg" alt="/icons/condense_yellow.svg" width="40px" /> Python | C++ | MATLAB | 数学 | 算法 | 物理 | 流体力学 | 泡沫 | 皂膜 | 曲面模型 | 厚度

</aside>

🎯要点

🎯肥皂泡二维流体模拟 | 🎯泡沫普拉托边界膜曲面模型算法演化厚度变化 | 🎯螺旋曲面三周期最小结构生成

📜皂膜用例:Python计算物理粒子及拉格朗日和哈密顿动力学 | Python和MATLAB粘性力接触力动态模型半隐式欧拉算法

pie title 语言分比
 "C++":90
 "Python":80
 "MATLAB":20
pie title 内容分比
 "物理":90
 "流体力学":80
 "数学":70
 "算法":60
 "皂膜":50
 "曲面结构":40

✂️梗概

✒️Python(MATLAB)三维曲面图

普拉托定律描述了肥皂膜的结构。这些定律是由比利时物理学家普拉托在 19 世纪根据他的实验观察制定的。自然界中的许多图案都是基于遵守这些定律的泡沫。此定律描述了皂膜的形状和构造如下:

除普拉托定律之外的结构是不稳定的,并且薄膜将很快倾向于重新排列自身以符合这些定律。美国数学家吉恩·艾伦·泰勒使用几何测量理论在数学上证明了这些定律适用于最小曲面。

肥皂膜是被空气包围的薄层液体(通常为水基)。例如,如果两个肥皂泡接触,它们会合并并在其间形成一层薄膜。因此,泡沫由通过普拉托边界连接的薄膜网络组成。肥皂膜可用作极小曲面的模型系统,极小曲面在数学中被广泛使用。

从数学角度来看,肥皂膜是最小表面。表面张力是单位面积产生表面所需的能量。薄膜——与任何物体或结构一样——倾向于以最小势能状态存在。为了最小化其能量,自由空间中的液滴自然呈现球形,对于给定的体积,其表面积最小。水坑和薄膜可以在其他力的存在下存在,例如重力和对基质原子的分子间吸引力。后一种现象称为润湿:基质原子和薄膜原子之间的结合力会导致总能量降低。在这种情况下,物体的最低能量配置是尽可能多的薄膜原子尽可能靠近基质。这将导致无限薄的薄膜,无限广泛地分布在基质上。实际上,粘附润湿效应(导致表面最大化)和表面张力效应(导致表面最小化)会相互平衡:稳定的结构可以是液滴、水坑或薄膜,具体取决于作用于身体的力。

💦Python绘制三维曲面:

Matplotlib 的 mpl_toolkits.mplot3d 工具包中的 axis3d 提供了用于创建三维曲面图的必要函数。曲面图是通过使用 ax.plot_surface() 函数创建的。

语法:

 ax.plot_surface(X, Y, Z)