The derivation of the divergence $\nabla \cdot v$ in spherical coordinates begins with the general tensor calculus formula, $\nabla \cdot v=\frac{1}{\sqrt{g}} \partial_a\left(\sqrt{g} v^a\right)$. The crucial geometric factor for this coordinate system is the square root of the metric determinant, $\sqrt{ g }= r ^{ 2 } \sin (\theta)$. Substituting this into the formula and simplifying yields the divergence in terms of the contravariant components $\left(v^a\right): \nabla \cdot v= \frac{1}{r^2} \partial_r\left(r^2 v^r\right)+\frac{1}{\sin (\theta)} \partial_\theta\left(\sin (\theta) v^\theta\right)+\partial_{\varphi} v^{\varphi}$. To verify this result against the standard physics expression, the contravariant components were converted to the physical components ( $\tilde{v}_a$ ) using the relationship $\tilde{v}a=\sqrt{\text { g }{a a}} v^a$, which introduces specific scaling factors like $1 / r$ and $1 /(r \sin (\theta))$ for the $\theta$ and $\varphi$ components, confirming the tensor-based derivation is consistent with the traditional vector analysis formula.

<aside> 🧄

✍️Mathematical Proof

$\complement\cdots$Counselor

</aside>

$$ \nabla \cdot v=\frac{1}{\sqrt{g}} \partial_a\left(\sqrt{g} v^a\right) $$

$$ \sqrt{g}= r ^2 \sin (\theta) $$

$$ \nabla \cdot v=\frac{1}{r^2} \partial_r\left(r^2 v^r\right)+\frac{1}{\sin (\theta)} \partial_\theta\left(\sin (\theta) v^\theta\right)+\partial_{\varphi} v^{\varphi} $$

$$ v^\theta=\frac{1}{ r } \tilde{v}\theta \quad \text { and } \quad v^{\varphi}=\frac{1}{ r \sin (\theta)} \tilde{v}{\varphi} $$

✍️Mathematical Proof

<aside> 🧄

  1. Derivation of Tensor Transformation Properties for Mixed Tensors
  2. The Polar Tensor Basis in Cartesian Form
  3. Verifying the Rank Two Zero Tensor
  4. Tensor Analysis of Electric Susceptibility in Anisotropic Media
  5. Analysis of Ohm's Law in an Anisotropic Medium
  6. Verifying Tensor Transformations
  7. Proof of Coordinate Independence of Tensor Contraction
  8. Proof of a Tensor's Invariance Property
  9. Proving Symmetry of a Rank-2 Tensor
  10. Tensor Symmetrization and Anti-Symmetrization Properties
  11. Symmetric and Antisymmetric Tensor Contractions
  12. The Uniqueness of the Zero Tensor under Specific Symmetry Constraints
  13. Counting Independent Tensor Components Based on Symmetry
  14. Transformation of the Inverse Metric Tensor
  15. Finding the Covariant Components of a Magnetic Field
  16. Covariant Nature of the Gradient
  17. Christoffel Symbol Transformation Rule Derivation
  18. Contraction of the Christoffel Symbols and the Metric Determinant
  19. Divergence of an Antisymmetric Tensor in Terms of the Metric Determinant
  20. Calculation of the Metric Tensor and Christoffel Symbols in Spherical Coordinates
  21. Christoffel Symbols for Cylindrical Coordinates
  22. Finding Arc Length and Curve Length in Spherical Coordinates
  23. Solving for Metric Tensors and Christoffel Symbols
  24. Metric Tensor and Line Element in Non-Orthogonal Coordinates
  25. Tensor vs. Non-Tensor Transformation of Derivatives
  26. Verification of Covariant Derivative Identities
  27. Divergence in Spherical Coordinates Derivation and Verification

🧄Proof and Derivation-1

</aside>