The electric field of a dipole is a source-free, irrotational vector field with both zero divergence and zero curl. This unique combination means the field can be described by both a scalar potential (electric potential) due to its irrotational nature and a vector potential due to its source-free nature, and that the work done by the field is path-independent.
<aside> 🧄
$\gg$Mathematical Structures Underlying Physical Laws
</aside>
The force field from an electric dipole has a divergence of zero ( $\nabla \cdot F=0$ ) for all points not at the origin. This means the field is source-free, as it originates from charges but does not have a net "source" or "sink" at any point in space. This is a defining characteristic of a solenoidal vector field.
The force field also has a curl of zero ( $\nabla \times F=0$ ). This indicates that the field is conservative or irrotational, meaning that the work done by the force in moving a charge between two points is independent of the path taken.
The electric field is a vector field that exists in the space surrounding electric charges. The field lines clearly show the direction of the force on a positive test charge. They point away from the positive charge and toward the negative charge. The force arrow on the test charge dynamically changes length. It gets shorter as the charge moves farther away from the dipole, illustrating that the strength of the electric field decreases with distance.
how charges between a positive and a negative influence the surrounding space
how charges between a positive and a negative influence the surrounding space
‣
<aside> 🧄
Proving the Cross Product Rules with the Levi-Civita Symbol
Proving the Epsilon-Delta Relation and the Bac-Cab Rule
Simplifying Levi-Civita and Kronecker Delta Identities
Why a Cube's Diagonal Angle Never Changes
How the Cross Product Relates to the Sine of an Angle
Finding the Shortest Distance and Proving Orthogonality for Skew Lines
A Study of Helical Trajectories and Vector Dynamics
The Power of Cross Products: A Visual Guide to Precessing Vectors
Divergence and Curl Analysis of Vector Fields
Unpacking Vector Identities: How to Apply Divergence and Curl Rules
Commutativity and Anti-symmetry in Vector Calculus Identities
Double Curl Identity Proof using the epsilon-delta Relation
The Orthogonality of the Cross Product Proved by the Levi-Civita Symbol and Index Notation
Surface Parametrisation and the Verification of the Gradient-Normal Relationship
Proof and Implications of a Vector Operator Identity
Conditions for a Scalar Field Identity
Solution and Proof for a Vector Identity and Divergence Problem
Kinematics and Vector Calculus of a Rotating Rigid Body
Work Done by a Non-Conservative Force and Conservative Force
The Lorentz Force and the Principle of Zero Work Done by a Magnetic Field
Calculating the Area of a Half-Sphere Using Cylindrical Coordinates
Divergence Theorem Analysis of a Vector Field with Power-Law Components
Total Mass in a Cube vs. a Sphere
Momentum of a Divergence-Free Fluid in a Cubic Domain
Total Mass Flux Through Cylindrical Surfaces
Analysis of Forces and Torques on a Current Loop in a Uniform Magnetic Field
Computing the Integral of a Static Electromagnetic Field
Surface Integral to Volume Integral Conversion Using the Divergence Theorem
Circulation Integral vs. Surface Integral
Using Stokes' Theorem with a Constant Scalar Field
Verification of the Divergence Theorem for a Rotating Fluid Flow
Integral of a Curl-Free Vector Field
Boundary-Driven Cancellation in Vector Field Integrals
Proving the Generalized Curl Theorem
Computing the Magnetic Field and its Curl from a Dipole Vector Potential
Proving Contravariant Vector Components Using the Dual Basis
Verification of Orthogonal Tangent Vector Bases in Cylindrical and Spherical Coordinates
Vector Field Analysis in Cylindrical Coordinates
Vector Field Singularities and Stokes' Theorem
Compute Parabolic coordinates-related properties
Analyze Flux and Laplacian of The Yukawa Potential
Verification of Vector Calculus Identities in Different Coordinate Systems
Analysis of a Divergence-Free Vector Field
The Uniqueness Theorem for Vector Fields
Analysis of Electric Dipole Force Field
</aside>