A divergence-free velocity field signifies an incompressible fluid where the density remains constant and mass is conserved, implying no fluid is being created or destroyed within a given volume. However, even in such a flow, total momentum is not necessarily zero. It can result from a non-zero average velocity, such as a constant upward velocity in the example provided. This leads to a net flow of momentum through the volume, demonstrating that divergence-free flows can still exhibit overall movement and momentum.
<aside> 🧄
$\gg$Mathematical Structures Underlying Physical Laws
$\complement\cdots$Counselor
</aside>
Divergence-Free Mode: In this mode, you see particles swirling but staying within the cube, demonstrating that the fluid is neither expanding nor compressing in the x-y plane. The net upward momentum shows how the fluid can still flow without a source or sink. This corresponds to the mathematical concept of a vector field with a zero divergence. Divergent Mode: In this mode, you see particles spreading out from a central point. This visualizes a source of fluid, where fluid is being created and pushed outwards. This corresponds to a vector field with a non-zero divergence.
Visualize both a swirling motion with divergence-free and a spreading motion with divergence under the vector field
‣
<aside> 🧄
Proving the Cross Product Rules with the Levi-Civita Symbol
Proving the Epsilon-Delta Relation and the Bac-Cab Rule
Simplifying Levi-Civita and Kronecker Delta Identities
Why a Cube's Diagonal Angle Never Changes
How the Cross Product Relates to the Sine of an Angle
Finding the Shortest Distance and Proving Orthogonality for Skew Lines
A Study of Helical Trajectories and Vector Dynamics
The Power of Cross Products: A Visual Guide to Precessing Vectors
Divergence and Curl Analysis of Vector Fields
Unpacking Vector Identities: How to Apply Divergence and Curl Rules
Commutativity and Anti-symmetry in Vector Calculus Identities
Double Curl Identity Proof using the epsilon-delta Relation
The Orthogonality of the Cross Product Proved by the Levi-Civita Symbol and Index Notation
Surface Parametrisation and the Verification of the Gradient-Normal Relationship
Proof and Implications of a Vector Operator Identity
Conditions for a Scalar Field Identity
Solution and Proof for a Vector Identity and Divergence Problem
Kinematics and Vector Calculus of a Rotating Rigid Body
Work Done by a Non-Conservative Force and Conservative Force
The Lorentz Force and the Principle of Zero Work Done by a Magnetic Field
Calculating the Area of a Half-Sphere Using Cylindrical Coordinates
Divergence Theorem Analysis of a Vector Field with Power-Law Components
Total Mass in a Cube vs. a Sphere
Momentum of a Divergence-Free Fluid in a Cubic Domain
Total Mass Flux Through Cylindrical Surfaces
Analysis of Forces and Torques on a Current Loop in a Uniform Magnetic Field
Computing the Integral of a Static Electromagnetic Field
Surface Integral to Volume Integral Conversion Using the Divergence Theorem
Circulation Integral vs. Surface Integral
Using Stokes' Theorem with a Constant Scalar Field
Verification of the Divergence Theorem for a Rotating Fluid Flow
Integral of a Curl-Free Vector Field
Boundary-Driven Cancellation in Vector Field Integrals
Proving the Generalized Curl Theorem
Computing the Magnetic Field and its Curl from a Dipole Vector Potential
Proving Contravariant Vector Components Using the Dual Basis
Verification of Orthogonal Tangent Vector Bases in Cylindrical and Spherical Coordinates
Vector Field Analysis in Cylindrical Coordinates
Vector Field Singularities and Stokes' Theorem
Compute Parabolic coordinates-related properties
Analyze Flux and Laplacian of The Yukawa Potential
Verification of Vector Calculus Identities in Different Coordinate Systems
Analysis of a Divergence-Free Vector Field
The Uniqueness Theorem for Vector Fields
Analysis of Electric Dipole Force Field
</aside>