Here explains a vector identity proof by simplifying both sides of an equation using the vector triple product and gradient product rules, ultimately showing that the identity holds only if the scalar field $\phi$ satisfies Laplace's equation ( $\nabla^2 \phi=0$ ). This means the scalar field must be a harmonic function. This theoretical concept is then made practical and intuitive by an app that visually connects a scalar field to its gradient vector field, allowing users to interactively explore these principles and identify harmonic functions.

<aside> 🧄

✍️Mathematical Proof

$\gg$Mathematical Structures Underlying Physical Laws

</aside>

🎬Demonstration

The app provides an intuitive, interactive way to understand the abstract concept of a gradient by visually connecting a scalar function to its corresponding vector field. It reinforces that the gradient is a vector that points in the direction of the steepest increase, with its magnitude representing the rate of change. Additionally, it introduces and visualizes the concept of the Laplacian, helping to identify harmonic functions.

Visualize the scalar field and its Laplacian analysis and harmonic function check

Visualize the scalar field and its Laplacian analysis and harmonic function check

✍️Mathematical Proof

<aside> 🧄

Proving the Cross Product Rules with the Levi-Civita Symbol

Proving the Epsilon-Delta Relation and the Bac-Cab Rule

Simplifying Levi-Civita and Kronecker Delta Identities

Dot Cross and Triple Products

Why a Cube's Diagonal Angle Never Changes

How the Cross Product Relates to the Sine of an Angle

Finding the Shortest Distance and Proving Orthogonality for Skew Lines

A Study of Helical Trajectories and Vector Dynamics

The Power of Cross Products: A Visual Guide to Precessing Vectors

Divergence and Curl Analysis of Vector Fields

Unpacking Vector Identities: How to Apply Divergence and Curl Rules

Commutativity and Anti-symmetry in Vector Calculus Identities

Double Curl Identity Proof using the epsilon-delta Relation

The Orthogonality of the Cross Product Proved by the Levi-Civita Symbol and Index Notation

Surface Parametrisation and the Verification of the Gradient-Normal Relationship

Proof and Implications of a Vector Operator Identity

Conditions for a Scalar Field Identity

Solution and Proof for a Vector Identity and Divergence Problem

Kinematics and Vector Calculus of a Rotating Rigid Body

Work Done by a Non-Conservative Force and Conservative Force

The Lorentz Force and the Principle of Zero Work Done by a Magnetic Field

</aside>